
Object-Oriented Programming in Oberon-2
Book · January 1993 with 511 Reads 
DOI: 10.1007/978-3-642-97479-3

Abstract

Bibliogr. s. 263-265

Content uploaded by Hanspeter Mössenböck
Content may be subject to copyright.

Chapters (2)

Overview

Chapter Jan 1993 · Object-Oriented Programming

Hanspeter Mössenböck

What is the essence of object-oriented programming? What are its typical applications, and what benefits can
we expect from it? How does object-oriented thinking differ from traditional, procedure-oriented thinking?
These are the questions that will be explored in this chapter.

Oberon-2

Chapter Jan 1993 · Object-Oriented Programming · pp.13-27

Hanspeter Mössenböck

Throughout this book we will use the programming language Oberon-2, an object-oriented language in the
tradition of Pascal and Modula-2

A Comparison of C++, FORTRAN 90 and Oberon-2 for Scientific Programming

Chapter Jan 1995

Bernd Mösli

Object-oriented extension to Erlang

Article

Dr Péter Szeredi

The Classbox Module System Proceedings of the ECOOP '03 Workshop on Object-oriented Language
Engineering for the Post-Java Era

Article Full-text available

Alexandre Bergel · Stéphane Ducasse · Wuyts Roel

"May You Have a Strong (-Typed) Foundation", Why Strong-Typed Programming Languages Do Matter

Article Jan 2004

Nicola Tomatis · Roberto Brega · Gabrio Rivera · Roland Siegwart

Fips, a "deep" linguistic multilingual parser

Conference Paper Full-text available Jan 2007

Eric Wehrli

Controllers: Reusable wrappers to adapt software components

Article Mar 2001 · INFORM SOFTWARE TECH

José M. Troya · Antonio Vallecillo

The Fips Multilingual Parser

Chapter Jan 2015

Eric Wehrli · Luka Nerima

Foundation of the taxonomic object system

Article Jan 1998 · INFORM SOFTWARE TECH

Shimon A. Reisner · David Harpaz · Richard Skulski · Andreas Zendler

Extensible Software Systems in Oberon

Article Sep 1996 · J COMPUT GRAPH STAT

Johannes L. Marais

Modular Programming Languages, Joint Modular Languages Conference, JMLC 2003, Klagenfurt,
Austria, August 25-27, 2003, Proceedings

Article Jan 2003

Laszlo Böszörmenyi · Peter Schojer

Recommendations

Cite this publication

Hanspeter Mössenböck
25.6 · Johannes Kepler University Linz

Discover the world's research

16+ million members

135+ million publications

700k+ research projects

Join for free

S H O P N O WEnds April 29
While supplies last

Advertisement

Author content Download full-text PDF

00

OBJECT-ORIENTED PROGRAMMING IN OBERON-2OBJECT-ORIENTED PROGRAMMING IN OBERON-2

Hanspeter MössenböckHanspeter Mössenböck
ETH Zürich, Institut für ComputersystemeETH Zürich, Institut für Computersysteme

ABSTRACTABSTRACT

 Oberon-2 is aOberon-2 is a refined version of Oberonrefined version of Oberon developed at ETH. It introduces type-bounddeveloped at ETH. It introduces type-bound procedures,procedures,
 read-only export of data,read-only export of data, and open arrayand open array variables. The For statement is reintroduced.variables. The For statement is reintroduced. This paperThis paper

 concentrates on type-bound procedures whichconcentrates on type-bound procedures which make Oberon-2 an object-oriented languagemake Oberon-2 an object-oriented language withwith
 dynamically-bound messagesdynamically-bound messages and strongand strong type checking at compile time. Messages can also betype checking at compile time. Messages can also be sent assent as

data packets (extensible records) that are passed to a handler procedure and are interpreted at run time.data packets (extensible records) that are passed to a handler procedure and are interpreted at run time.
 This is as flexible as the Smalltalk message dispatching mechanism. Objects carry typeThis is as flexible as the Smalltalk message dispatching mechanism. Objects carry type information at runinformation at run

 time whichtime which allows dynamic bindingallows dynamic binding of messages, runof messages, run time type tests, andtime type tests, and thethe implementationimplementation of persistentof persistent
objects. Oberon-2 is available on various machines.objects. Oberon-2 is available on various machines.

OVERVIEWOVERVIEW

 In 1987,In 1987, Wirth definedWirth defined thethe languagelanguage OberonOberon [1]. Compared[1]. Compared withwith its predecessor Modula-2,its predecessor Modula-2, Oberon is smaller andOberon is smaller and
 cleaner, and itcleaner, and it supports type extension whichsupports type extension which is a prerequisiteis a prerequisite for object-orientedfor object-oriented programming. Typeprogramming. Type extension allowsextension allows

 the programmer to extend an existing record typethe programmer to extend an existing record type by adding new fieldsby adding new fields while preserving thewhile preserving the compatibility between thecompatibility between the
 old and the newold and the new type. Operations on a type, however, have to be implemented as ordinary procedures withouttype. Operations on a type, however, have to be implemented as ordinary procedures without

 syntactic relation tosyntactic relation to that type.that type. They cannotThey cannot bebe redefined for anredefined for an extendedextended type. Therefore dynamically-boundtype. Therefore dynamically-bound messagesmessages
 (which are vital for object-oriented programming) are not directly supported by(which are vital for object-oriented programming) are not directly supported by Oberon, although they can beOberon, although they can be

implemented via message records (see below).implemented via message records (see below).

 ComparedCompared to Oberon, Oberon-2to Oberon, Oberon-2 [2] provides type-bound procedures[2] provides type-bound procedures (methods), read-only export of data, and(methods), read-only export of data, and openopen
 array variables. The Forarray variables. The For statement is reintroducedstatement is reintroduced afterafter havinghaving beenbeen eliminatedeliminated in thein the step fromstep from Modula-2Modula-2 to Oberon.to Oberon.

 This paperThis paper concentrates on type-boundconcentrates on type-bound proceduresprocedures and theand the use of Oberon-2use of Oberon-2 for object-oriented programming.for object-oriented programming. TheThe
other facilities are described in the Oberon-2 language report.other facilities are described in the Oberon-2 language report.

 Type-bound procedures areType-bound procedures are operations applicable to variables of a record or pointer type. Theyoperations applicable to variables of a record or pointer type. They are syntacticallyare syntactically
 associated withassociated with thatthat type andtype and cancan thereforetherefore easily be identifiedeasily be identified as its operations. Theyas its operations. They can becan be redefinedredefined for anfor an

 extended typeextended type and are invoked using dynamicand are invoked using dynamic binding. Type-boundbinding. Type-bound procedures together withprocedures together with type extension maketype extension make
 Oberon-2 aOberon-2 a true object-orientedtrue object-oriented languagelanguage with dynamically-boundwith dynamically-bound messagesmessages andand strongstrong type checking at compiletype checking at compile

 time. Oberon-2 is the result of three years experience of usingtime. Oberon-2 is the result of three years experience of using OberonOberon and its experimental offspring Object Oberonand its experimental offspring Object Oberon
 [3]. Object-oriented[3]. Object-oriented concepts wereconcepts were integratedintegrated smoothly intosmoothly into OberonOberon withoutwithout sacrificing thesacrificing the conceptualconceptual simplicity ofsimplicity of thethe

language.language.

 Object-oriented programmingObject-oriented programming is based on threeis based on three concepts: concepts: data abstractiondata abstraction,, type extensiontype extension and and dynamic bindingdynamic binding of aof a
 messagemessage toto the procedurethe procedure thatthat implementsimplements it. Allit. All these conceptsthese concepts are supportedare supported by Oberon-2.by Oberon-2. WeWe first discuss typefirst discuss type

 extension since this is perhapsextension since this is perhaps the mostthe most important of theimportant of the three notions, andthree notions, and then turn to type-boundthen turn to type-bound procedures, whichprocedures, which
allow data abstraction and dynamic binding.allow data abstraction and dynamic binding.

TYPE EXTENSIONTYPE EXTENSION

 Type extensionType extension was introducedwas introduced by Wirth in Oberon.by Wirth in Oberon. It allows the programmerIt allows the programmer to derive a newto derive a new type from an existing onetype from an existing one
by adding data fields to it. Consider the declarationsby adding data fields to it. Consider the declarations

TYPETYPE
 PointDescPointDesc = RECORD x, y: INTEGER END;= RECORD x, y: INTEGER END;

 PointDesc3DPointDesc3D = RECORD (PointDesc) z: INTEGER END;= RECORD (PointDesc) z: INTEGER END;

 PointPoint = POINTER TO PointDesc;= POINTER TO PointDesc;
 Point3DPoint3D = POINTER TO PointDesc3D;= POINTER TO PointDesc3D;

 PointXYZPointXYZ = POINTER TO PointDescXYZ;= POINTER TO PointDescXYZ;
 PointDescXYZPointDescXYZ = RECORD x, y, z: INTEGER END;= RECORD x, y, z: INTEGER END;

PointDesc3DPointDesc3D PointDescPointDesc is an extension of is an extension of (specified by the type name in parentheses that follows the symbol (specified by the type name in parentheses that follows the symbol
RECORD). It starts with the same fields as RECORD). It starts with the same fields as but contains an additional field but contains an additional field . Conversely, . Conversely, is isPointDescPointDesc zz PointDescPointDesc
called the base type of called the base type of . The notion of type extension also applies to pointers. . The notion of type extension also applies to pointers. is an extension of is an extension ofPointDesc3DPointDesc3D Point3DPoint3D
PointPoint PointPoint Point3DPoint3D and and is the base type of is the base type of . Type extension is also called inheritance because one can think of. Type extension is also called inheritance because one can think of
PointDesc3DPointDesc3D xx yy PointDescPointDesc as "inheriting" the fields as "inheriting" the fields and and from from ..

The crucial point about type extension is that The crucial point about type extension is that is compatible with is compatible with , while , while is not (though it also is not (though it alsoPoint3DPoint3D PointPoint PointXYZPointXYZ
points to a record with the fields points to a record with the fields and and). If). If is of type is of type and and is of type is of type the assignment the assignmentxx yy pp PointPoint p3p3 Point3DPoint3D

p := p3p := p3

11

is legal since is legal since is an (extended) is an (extended) and therefore assignment compatible with and therefore assignment compatible with , which is a , which is a . The reverse. The reversep3p3 PointPoint pp PointPoint
assignment assignment is illegal since is illegal since is only a is only a but not a but not a like like . The same compatibility rules apply to. The same compatibility rules apply top3 := pp3 := p pp PointPoint Point3DPoint3D p3p3
records.records.

Objects which are pointers or records have both a Objects which are pointers or records have both a and a and a . The static type is the type which the. The static type is the type which thestatic typestatic type dynamic typedynamic type
object is declared of. The dynamic type is the type which the object has at run time. It may be an extension of its staticobject is declared of. The dynamic type is the type which the object has at run time. It may be an extension of its static
type. After the assignment type. After the assignment the dynamic type of the dynamic type of is is , while its static type is still , while its static type is still . That means that. That means thatp := p3p := p3 pp Point3DPoint3D PointPoint
the field the field is still part of the block that is still part of the block that points to, but it cannot be accessed via points to, but it cannot be accessed via since the static type of since the static type of does not does notp3^.zp3^.z pp pp pp
contain a field contain a field (Figure 1). (Figure 1).p^.zp^.z

afterafter

pp xx
yy
zz

p := p3p := p3

p3p3

zz
yy
xx

Figure 1Figure 1. Assignment between the extended object and the base object. Assignment between the extended object and the base object

Objects like Objects like are polymorphic, i.e. they may assume various types at run time. The actual type an object has at run are polymorphic, i.e. they may assume various types at run time. The actual type an object has at runpp
time can be examined with a type test:time can be examined with a type test:

p IS Point3Dp IS Point3D

yields TRUE if the dynamic type of yields TRUE if the dynamic type of is is (or an extension of it) and FALSE otherwise. A type guard (or an extension of it) and FALSE otherwise. A type guardpp Point3DPoint3D

p(Point3D)p(Point3D)

asserts (i.e., tests at run time) that the dynamic type of asserts (i.e., tests at run time) that the dynamic type of is is (or an extension of it). If so, the designator (or an extension of it). If so, the designatorpp Point3DPoint3D
p(Point3D)p(Point3D) Point3DPoint3D is regarded as having the static type is regarded as having the static type . If not, the program is aborted. Type guards allow the. If not, the program is aborted. Type guards allow the
treatment of treatment of as a as a object. Therefore the following assignments are possible: object. Therefore the following assignments are possible: pp Point3DPoint3D p(Point3D)^.z := 0; p3 :=p(Point3D)^.z := 0; p3 :=
p(Point3D);p(Point3D);

For objects of a record type, the static and the dynamic types are usually the same. If For objects of a record type, the static and the dynamic types are usually the same. If is of type is of type and and pdpd PointDescPointDesc pd3pd3
is of type is of type , the assignment , the assignment does not change the dynamic type of does not change the dynamic type of . Only the fields . Only the fields and andPointDesc3DPointDesc3D pd := pd3pd := pd3 pdpd pd3.xpd3.x
pd3.ypd3.y pdpd pdpd PointDescPointDesc are moved to are moved to , and the dynamic type of , and the dynamic type of remains remains . The compatibility between records is of minor. The compatibility between records is of minor
importance except when importance except when is a formal variable parameter and is a formal variable parameter and is its corresponding actual parameter. In this case is its corresponding actual parameter. In this casepdpd pd3pd3
the dynamic type of the dynamic type of is is and the component and the component is not stripped off. is not stripped off.pdpd Point3DPoint3D pd3^.zpd3^.z

The motivation for type extension is that an algorithm which works with type The motivation for type extension is that an algorithm which works with type can also work with any of its can also work with any of itsPointPoint
extensions. For example, the procedureextensions. For example, the procedure

PROCEDURE PROCEDURE (p: Point; dx, dy: INTEGER); (p: Point; dx, dy: INTEGER);MoveMove
BEGIN INC(p.x, dx); INC(p.y, dy)BEGIN INC(p.x, dx); INC(p.y, dy)
END Move;END Move;

can be called not only as can be called not only as but also as but also as ..Move(p, dx, dy)Move(p, dx, dy) Move(p3, dx, dy)Move(p3, dx, dy)

TYPE-BOUND PROCEDURESTYPE-BOUND PROCEDURES

Type-bound procedures serve to implement abstract data types with dynamically bound operations. An abstract dataType-bound procedures serve to implement abstract data types with dynamically bound operations. An abstract data
type is a user-defined type which encapsulates private data together with a set of operations that can be used totype is a user-defined type which encapsulates private data together with a set of operations that can be used to
manipulate this data. In Modula-2 or in Oberon an abstract data type is implemented as a record type and a set ofmanipulate this data. In Modula-2 or in Oberon an abstract data type is implemented as a record type and a set of
procedures. The procedures, however, are syntactically unrelated to the record, which sometimes makes it hard toprocedures. The procedures, however, are syntactically unrelated to the record, which sometimes makes it hard to
identify the data and the operations as an entity.identify the data and the operations as an entity.

In Oberon-2, procedures can be connected to a data type explicitly. Such procedures are called type-bound. TheIn Oberon-2, procedures can be connected to a data type explicitly. Such procedures are called type-bound. The
interface of an abstract data type for texts may look like this:interface of an abstract data type for texts may look like this:

TYPETYPE
Text = POINTER TO TextDesc;Text = POINTER TO TextDesc;
TextDesc = RECORDTextDesc = RECORD

data: ... data: ... (*(hidden) text data*)(*(hidden) text data*)
PROCEDURE (t: Text) PROCEDURE (t: Text) (string: ARRAY OF CHAR; pos: LONGINT); (string: ARRAY OF CHAR; pos: LONGINT);InsertInsert
PROCEDURE (t: Text) PROCEDURE (t: Text) (from, to: LONGINT); (from, to: LONGINT);DeleteDelete
PROCEDURE (t: Text) PROCEDURE (t: Text) (): LONGINT; (): LONGINT;LengthLength

END;END;

This gives a nice overview showing which operations can be applied to variables of type Text. However, it would beThis gives a nice overview showing which operations can be applied to variables of type Text. However, it would be
unwise to implement the operations directly within the record since that would clutter up the declarations with code. Inunwise to implement the operations directly within the record since that would clutter up the declarations with code. In
fact, the above view of fact, the above view of was extracted from the source code with a browser tool. The actual Oberon-2 program was extracted from the source code with a browser tool. The actual Oberon-2 programTextText
looks like this:looks like this:

22

TYPETYPE
Text = POINTER TO TextDesc;Text = POINTER TO TextDesc;
TextDesc = RECORDTextDesc = RECORD

data: (*data: (* *)*)(hidden) text data(hidden) text data
END;END;

PROCEDURE (t: Text)PROCEDURE (t: Text) (string: ARRAY OF CHAR; pos: LONGINT); (string: ARRAY OF CHAR; pos: LONGINT); Insert Insert
BEGIN ...BEGIN ...
END Insert;END Insert;

PROCEDURE (t: Text) PROCEDURE (t: Text) (from, to: LONGINT); (from, to: LONGINT);DeleteDelete
BEGIN ...BEGIN ...
END Delete;END Delete;

PROCEDURE (t: Text) PROCEDURE (t: Text) (): LONGINT; (): LONGINT;LengthLength
BEGIN ...BEGIN ...
END Length;END Length;

This notation allows the programmer to declare the procedures in arbitrary order and after the type and variableThis notation allows the programmer to declare the procedures in arbitrary order and after the type and variable
declarations, eliminating the problem of forward references. The procedures are associated with a record by the typedeclarations, eliminating the problem of forward references. The procedures are associated with a record by the type
of a special formal parameter of a special formal parameter written in front of the procedure name. This parameter denotes the operand to written in front of the procedure name. This parameter denotes the operand to(t: Text)(t: Text)
which the operation is applied (or the receiver of a message, as it is called in object-oriented terminology). Type-boundwhich the operation is applied (or the receiver of a message, as it is called in object-oriented terminology). Type-bound
procedures are considered local to the record to which they are bound. In a call they must be qualified with an object ofprocedures are considered local to the record to which they are bound. In a call they must be qualified with an object of
this type, e.g.this type, e.g.

txt.Insert("Hello", 0)txt.Insert("Hello", 0)

We say that the message We say that the message is sent to is sent to , which is called the , which is called the of the message. The variable of the message. The variable serves two serves twoInsertInsert txttxt receiverreceiver txttxt
purposes: it is passed as an actual parameter to purposes: it is passed as an actual parameter to and it is used to select the procedure and it is used to select the procedure bound to type bound to type ..tt InsertInsert TextText

If If is extended, the procedures bound to it are automatically also bound to the extended type. However, they can is extended, the procedures bound to it are automatically also bound to the extended type. However, they canTextText
be redefined by a new procedure with the same name (and the same parameter list), which is explicitly bound to thebe redefined by a new procedure with the same name (and the same parameter list), which is explicitly bound to the
extended type. Let’s assume that we want to have a more sophisticated type extended type. Let’s assume that we want to have a more sophisticated type which not only maintains which not only maintainsStyledTextStyledText
ASCII text but also style information. The operations Insert and ASCII text but also style information. The operations Insert and have to be redefined since they now also have have to be redefined since they now also haveDeleteDelete
to update the style data, whereas the operation to update the style data, whereas the operation is not affected by styles and can be inherited from is not affected by styles and can be inherited from without withoutLengthLength TextText
redefinition.redefinition.

TYPETYPE
StyledText = POINTER TO StyledTextDesc;StyledText = POINTER TO StyledTextDesc;
StyledTextDesc = RECORD (TextDesc)StyledTextDesc = RECORD (TextDesc)

style: ... (*style: ... (* *)*)(hidden) style data(hidden) style data
END;END;

PROCEDURE (st: StyledText) PROCEDURE (st: StyledText) (string: ARRAY OF CHAR; pos: LONGINT); (string: ARRAY OF CHAR; pos: LONGINT);InsertInsert
BEGINBEGIN

...update style dataupdate style data
st.Insert^ (string, pos)st.Insert^ (string, pos)

END Insert;END Insert;

PROCEDURE (st: StyledText) PROCEDURE (st: StyledText) (from, to: LONGINT); (from, to: LONGINT);DeleteDelete
BEGINBEGIN

...update style dataupdate style data
st.Delete^ (from, to)st.Delete^ (from, to)

END Delete;END Delete;

We do not want to rewrite We do not want to rewrite and and completely but only want to update the style data and let the original completely but only want to update the style data and let the originalInsertInsert DeleteDelete
procedures bound to procedures bound to do the rest of the work. In a procedure bound to type do the rest of the work. In a procedure bound to type , a procedure bound to the base type, a procedure bound to the base typeTextText TT
of of is called by appending the symbol ^ to the procedure name in a call (is called by appending the symbol ^ to the procedure name in a call ().).TT st.Insert^ (string, pos)st.Insert^ (string, pos)

Dynamic bindingDynamic binding

Because of the compatibility between a type and its extensions, a variable Because of the compatibility between a type and its extensions, a variable of type of type can be assigned to a can be assigned to astst StyledTextStyledText
variable variable of type of type . The message . The message then invokes the procedure Insert which is bound to then invokes the procedure Insert which is bound to , although , although tt TextText t.Insertt.Insert StyledTextStyledText tt
has been declared of type has been declared of type . This is called dynamic binding: the called procedure is the one which is bound to the. This is called dynamic binding: the called procedure is the one which is bound to theTextText
dynamic type of the receiver.dynamic type of the receiver.

Polymorphism and dynamic binding are the cornerstones of object-oriented programming. They allow viewing anPolymorphism and dynamic binding are the cornerstones of object-oriented programming. They allow viewing an
object as an abstract entity which may assume various concrete shapes at run time. In order to apply an operation toobject as an abstract entity which may assume various concrete shapes at run time. In order to apply an operation to
such an object, one does not have to distinguish between its variants. One rather sends a message telling the objectsuch an object, one does not have to distinguish between its variants. One rather sends a message telling the object
what to do. The object responds to the message by invoking that procedure which implements the operation for thewhat to do. The object responds to the message by invoking that procedure which implements the operation for the
dynamic type of the receiver.dynamic type of the receiver.

In Oberon-2, all type-bound procedures are called using dynamic binding. If static binding is desired (which is slightlyIn Oberon-2, all type-bound procedures are called using dynamic binding. If static binding is desired (which is slightly
more efficient), ordinary procedures can be used. However, one must be aware that statically-bound proceduresmore efficient), ordinary procedures can be used. However, one must be aware that statically-bound procedures
cannot be redefined.cannot be redefined.

View

View

Citations (53) References (6)

... Oberon [6, 9] evolved from Modula-2[5]. Oberon-2 [7, 8, 19] has been and will be a valuablealternative to C++ [1, 2]
in any context, where general-purposeprogramming languages are appropriate [10, 11]. We compare Oberon-2 onlyto
C++ and FORTRAN 90 [3, 4], since these programming languages areextensions of their wide-spread ancestors C and
FORTRAN 77. ...

... We compare only the main language features being of interest in a scientificand engineering context [12, 13, 14,15,
16, 17, 18]. Object-orientedfeatures are not discussed (see [19, 20, 21, 22]). ...

... In the chapter "design notes" [1], the author writes, "Simplicity was animportant design criterion for C++ ..."! But the
language reference chapter forC++ covers about 150 pages, versus less than 30 pages for Oberon [9] orOberon-2 [19] .
A tool should support the solving of problems, not createproblems. ...

View Show abstract

... Object-oriented programming [7] (OOP) is another way to structure a program. In an object-oriented system, the
segments of the program are objects. ...

... This makes reusing code written in objects possible. I highlight some costs and benefits of OOP based on [7] :
Benefits: ...

... The definition of a simple class: We can try out this class by entering the following commands into the Erlang shell: 1>
A = object:new(alpha). {object,alpha,alpha,<0.33.0>,<0.34.0>} 2> object:call(A, fact, [7]). 5040 4> object:set(A, field1,
11). ...

View

... There exist two kinds of class extension: a method addition adds a new method, while a method replacement
replaces an existing method. Classical module systems, like those of Modula-2[17], Modula-3 [1] , Oberon- 2 [8] , Ada
[13], or MzScheme's [4] do not support class extensions. Numerous object-oriented programming languages, such as
Java, C++, and Eiffel [7] lack this facility. ...

... No existing mainstream language supports class extensions, modules, and local rebinding. Classical module systems,
like those of Modula-2[17], Modula-3 [1], Oberon-2 [8] , Ada [13] or Java, do not support class extensions. Keris
introduces extensible modules which are composed hierarchically and linked implicitly. ...

View Show abstract

... XO/2 is an object-oriented, hard-real time system software and framework, designed for safety, extensibility and
abstrac- tion [6]. It is written in, and designed for the object-oriented language Oberon-2 [19] . It takes care of many
common issues faced by programmers of mechatronic products, by hiding general design patterns inside internal
mechanisms or by encapsulating them into easy-to-understand abstractions. ...

View Show abstract

... The computational model adopted for the Fips project relies on object-oriented (OO) concepts (see, for instance,
Mössenböck, 1995) . An abstract model is assumed both for objects and for their associated procedures (usually called
"methods" in OO-jargon) -roughly corresponding to the "universal" linguistic level -from which language-specific objects
and procedures are derived. ...

View Show abstract

... Layered reflective models are well known and widely used. Apart from the two aforementioned papers, we can also
cite the Composition Filters model [3], the Layered Object model LayOM [5], the meta-actors defined in the Actors model
[1], the object filters [11], the MetaCombiner approach by Mezino [14], COM's containment [17], Orbix filters [4] or the
message handlers in Oberon- 2 [16] , among others. However, our controllers are first-class reusable entities, they all
have the same structure, and are more than just computational filters, while the meta-components of those models
suffer from the limitations we pointed out in the introduction of this paper. ...

View Show abstract

View Show abstract

View Show abstract

View Show abstract

View

Show more

FEATURED VIDEOS

Gut microbiota may be the reason why cancer
immunotherapy works for some but not all Read More

Powered by

Advertisement

Project

Project MetaConc: Towards Meta-
Level Engineering and Tooling for
Complex Concurrent Systems

Stefan Marr · Carmen Torres López · Elisa
Gonzalez Boix · [...] · Dominik Aumayr

http://ssw.jku.at/Research/Projects/MetaConc/

View project

Project

GraalVM
Christian Wirth · Hanspeter Mössenböck ·

Christian Humer · [...] · Michael L. Van De Vanter

View project

Project

AntTracks
Markus Weninger · Hanspeter Mössenböck ·

Philipp Lengauer · [...] · Elias Gander

Object allocations and garbage collection can have a
considerable impact on the performance of Java applications.
Without monitoring tools, such performance problems are hard
to track down, and if ... [more]

View project

Project

Graal compiler
Gilles Duboscq · Thomas Wuerthinger ·

Hanspeter Mössenböck · [...] · Christian Wimmer

View project

Article

Programming in Python 3 : A
Complete Guide Introducing to the
Python Language / M.
Summerfield.
Mark Summerfield

Contenido: 1. Introducción rápida a la programación procesal; 2.
Tipos de datos; 3. Tipos de datos de colección; 4. Estructuras
de control y funciones; 5. Módulos; 6. Programación orientada a
objetos; 7. Manejo de archivos; 8. Técnicas avanzadas de
programación; 9. Depuración, pruebas y creación de perfiles;
10. Procesos e hilos; 11. Creación de redes; 12. Programación
de bases de datos; 13. ... [Show full abstract]

Read more

Conference Paper

htmladdnormallinkReflection in
Prototype-based Object-Oriented
Programming
languages.http://www.lirm...
October 1991

Jacques Malenfant · Pierre Cointe ·
Christophe Dony · Philippe Mulet

Read more

Article

Object-oriented C++ data
structures for real programmers /
Jan L. Harrington
Jan L. Harrington

Incluye índice

Read more

Article

Computer Aided Control System
Analysis and Design Based on the
Concept of Object-Orientation
May 1988

Ichiro AKAHORI · Shinji HARA

A new type CAD system for control system analysis and design
has been developed on a workstation, which is written in
Smalltalk-80, an object oriented language, combined with C and
Lisp. The system has the following features: 1) The system can
aid designer not only for numerical computation served in the
conventional CAD systems but also for symbolic manipulation
and knowledge processing. Since ... [Show full abstract]

Read more

Discover more

or Recruit researchers Join for freeSearch for publications, researchers, or questions Discover by subject area Login

Company

About us

News

Careers

Support

Help Center

Business solutions

Advertising

Recruiting

© 2008-2020 ResearchGate GmbH. All rights reserved. Terms · Privacy · Copyright · Imprint

See all ›
53 Citations

See all ›
6 References

Download citation Share Download full-text PDF

Advertisement

Skip Ad

javascript:window.open(window.clickTag)

